Factoring in Skew-polynomial Rings over Finite Fields
نویسندگان
چکیده
منابع مشابه
Factoring in Skew-Polynomial Rings over Finite Fields
Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Applications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously...
متن کامل$\mathcal{P}$-schemes and Deterministic Polynomial Factoring over Finite Fields
We introduce a family of mathematical objects called $\mathcal{P}$-schemes, where $\mathcal{P}$ is a poset of subgroups of a finite group $G$. A $\mathcal{P}$-scheme is a collection of partitions of the right coset spaces $H\backslash G$, indexed by $H\in\mathcal{P}$, that satisfies a list of axioms. These objects generalize the classical notion of association schemes as well as the notion of $...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 1998
ISSN: 0747-7171
DOI: 10.1006/jsco.1998.0224